
Latent Civil War: Improving Inference and Forecasting

with a Civil War Measurement Model

Andrew Halterman∗

Benjamin J. Radford†

July 26, 2023

Abstract

This paper contributes to the substantive study of civil war onset and the method-

ological literature on handling latent dependent variables. We first introduce a new

Bayesian measurement model of civil war status, using eight datasets on civil war sta-

tus and a dynamic Bayesian IRT to produce measures of latent civil war status. Using

the latent data, we then re-analyze canonical work on civil war onset, showing that

some previous findings are sensitive to the uncertainty in civil war status. We then

turn to our second methodological contribution, introducing a technique (“posterior

bagging”) for building improved forecasting models for civil war onset.

1 Introduction

Political scientists have developed Bayesian measurement models for concepts such as democ-

racy (e.g. Treier and Jackman 2008; Pemstein, Meserve and Melton 2010; Ulfelder and Taylor

2015), respect for human rights (e.g. Fariss 2014, 2019), wartime sexual violence (Krüger and

Nord̊as 2020), and other expert coded data (Marquardt and Pemstein 2018), along with many

techniques for estimating latent political ideology.1 Measurement models allow researchers

to address uncertainty and missing data in a principled way and to account for the differences

across raters or datasets.
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Civil war status is a natural application for measurement models, but no latent variable

model of civil war status has yet been published. Using a measurement model to estimate

latent civil war status has several appealing features. First, it allows us to reduce our depen-

dence on any specific dataset’s coding of civil war, which may have idiosyncratic decisions

or errors. Second, it allows us to extend the range of coverage for the dataset beyond the

years that any particular dataset covers, which is important for forecasting. Finally, the es-

timates from a latent variable model of civil war status more accurately reflect the inherent

uncertainty in civil war status, reporting the probability that a country-year is experiencing

civil war, rather than a binary rating.

Recent work has explored the special requirements that using latent variables in regres-

sion models imposes. For instance, Fong and Grimmer (2019) discuss the extra assumptions

that are required to recover unbiased causal estimates when treatment is a latent variable.

Specifically, using latent variables as outcomes requires special techniques. If the variance

in the latent estimate is independent of the explanatory variables in the model, the extra

variance should increase the variance of our parameter estimates but will not induce bias.

To incorporate the uncertainty of the latent variable into our parameter estimates, we follow

a sampling-based technique used in Mislevy (1991) and Schnakenberg and Fariss (2014).

They suggest drawing repeatedly from the posterior distribution of the latent variable and

use Rubin’s method, developed for accounting for the variance caused by multiple imputa-

tion methods (Rubin 1976), to aggregating uncertainty from draws into the final parameter

estimates (Mislevy 1991). We replicate the Fearon and Laitin (2003) model of civil war, us-

ing our new latent measure of civil war status and accounting for the variance of the latent

estimate using the technique described above.

However, the techniques described above assume that the variance in the latent variable

is independent of the explanatory variables in the model. This is not the case for our model

of civil war status. We show that the variance in the latent civil war model is correlated with

the variables we observe, raising concerns that error in measures of civil war is dependent

on omitted variables as well, which would bias parameter estimates in studies of civil war

onset. Recent work has brought renewed attention to the problem of non-classical error in

dependent variables (Millimet and Parmeter 2022), which this current work emphasizes as

well.

Finally, we show how our latent civil war measure can be used to build improved fore-

casting models for civil war onset. We begin with two insights. First, fitting models on a

binary outcome measure of civil war status is equivalent to dichotomizing the continuous

latent civil war status measure. In general, dichotomizing continuous dependent variables

greatly reduces the power of our models. In civil war onset, this is especially problematic
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as the onset of civil war is a rare event. We show that using the new latent civil war status

measure instead of the binary measure increases the power of our models.

Second, we introduce an extension of the bootstrap aggregating (“bagging”) method

that uses draws from the posterior estimate of civil war status, alongside the traditional

bootstrapping method. Traditional bagging, which underlies algorithms such as the random

forest classifier, take repeated bootstrap draws from a dataset, fit a classifier on each sample,

and aggregate the set of classifiers’ predictions into a final prediction. We extend this method

to use draws from the posterior distribution of the latent civil war status measure. ”Posterior

bagging” allows us to train predictive models on a wider range of possible civil war outcomes,

which allows us to increase the stability and predictive power of our forecasting model. Note

that the purpose of this technique is not to improve the uncertainty of our parameters (as

Mislevy (1991) and Schnakenberg and Fariss (2014) do), but to improve the accuracy of our

predictions by providing the model with a wider range of possible outcomes.

2 Error in the Dependent Variable

Measurement error in the dependent variable in a regression context has received less atten-

tion than errors in independent variables because under common assumptions about classical

measurement in the dependent variable, measurement error in the dependent variable is in-

corporated in the regression error term.

If the true model is given by ytrue = Xβ + ε, but the observed data is measured with

error γ, we can write the observed dependent variable as yobs = ytrue +γ. Rearranging terms

yields ytrue
k = Xβ + ε + γ. If the additional measurement error term γ is mean zero and

independent of X, the regular proof of the unbiasedness of OLS holds and shows unbiased

estimates β. Thus, a regression with the observed values yobs produces unbiased coefficient

estimates for the true model with ytrue.

However, running the regression with yobs, rather than the error-free ytrue, introduces

three complications:

1. Greater, unaccounted variance in the coefficient estimates, leading to incorrect infer-

ence.

2. Greater variance leading to degraded predictive performance.

3. If γ is not independent of X, the regression on yobs will produce biased coefficient

estimates.
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We illustrate how a measurement model that produces an estimate ŷtrue can be used to

address the first and second issues. Following previous work (Schnakenberg and Fariss 2014),

we show that using the estimates from a measurement model of the dependent variable allows

us to incorporate additional uncertainty in our parameters estimates. Next, we introduce

a technique, “posterior bagging”, that improves the predictive performance of a model,

compared to training on the original observed data.

The final issue is empirically testable and we leave for future versions of this work. If

measurement error is not independent of the covariates in common explanatory models of

civil war, this implies that the coefficient estimates in many models of civil war are biased.

3 Civil War as a Latent Variable

We identify eight separate datasets on civil war status. Table 1 shows the eight civil war

datasets we use in our latent variable model, along with their definitions. Note that we

split the UCDP-PRIO armed conflict dataset into two separate datasets, following the two

definitions of civil war that they provide. All of the datasets have as a core component of

their definition that a civil war involves armed conflict that produces casualties, and involves

a non-state armed group fighting with the government. The primary differences across the

datasets concern the battle death threshold and distribution of causalities between sides,

along with different rules about when an interrupted conflict generates separate incidents or

a single, prolonged incident.

Dataset Definition
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ICEWS Ground Truth

Dataset (Lustick et al.

2015)

• An insurgency is “organized, active, violent oppo-

sition with substantial arms, whose objective is to

overthrow the central government” (3)

• Rebellion is “organized, active, violent opposition

with substantial arms, whose objective is to seek

autonomy or independence from the central gov-

ernment.” (3-4)

• No battle death threshold, but “there must be

multiple instances of violence either on a specific

month or in the surrounding months” (3)

• ICEWS reports civil war at the monthly level: we

code a country-year as having civil war if more

than 6 months have either insurgency or rebellion

UCDP (major)

(Melander, Pettersson and

Themnér 2016; Gleditsch

et al. 2002)

• armed conflict between a government and orga-

nized opposition over government or territory

• >1,000 battle deaths per year

• We include both “internal armed conflict” and

“internationalized internal armed conflict”, where

a second state intervenes.

UCDP (major or minor) Same as above, but with a lower death threshold:

• >25 battle deaths per year
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PITF Major Episodes of

Political Violence (Mar-

shall 2019)

• We code both “civil war” and “ethnic war” as civil

war.

• “information regarding the degree of militant or-

ganization, tactical and strategic characteristics,

and expressed level of commitment to the use of

violence are taken into consideration; the designa-

tion of war carries with it a stronger institutional,

or institutionalized, component and more definite

objectives.” (2)

• “The ‘begin’ and ‘end’ years [...] are those con-

sidered by the author to be those most likely to

capture the transformative ‘moments’ (beginning

and ending) of the episodes” (7)

Fearon and Laitin (2003) • Violent conflict state and organized non-state ac-

tor

• >1,000 total deaths

• Yearly average deaths >100

• >100 deaths on both sides

• Anti-colonial wars included

Doyle and Sambanis

(2000)
• >1,000 total battle deaths

• >1,000 battle deaths in at least one year

• organized armed opposition challenges the

sovereignty of a state within its borders

Collier and Hoeffler

(2002)
• Internal conflict

• Government and identifiable rebel group each suf-

fer >5% casualties

• >1,000 battle deaths per year

• Anti-colonial wars excluded
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Correlates of War (Sar-

kees and Schafer 2000)

• Internal (non-colonial) war involving the govern-

ment

• “Effective resistance” by each side, measuring by

the ratio of casualties

• >1,000 battle deaths per year

• Ceasefires lasting longer than 6 months produce a

new episode

Table 1: Civil war datasets with civil war coding criteria

4 A Dynamic Bayesian Measurement Model of Latent

Civil War

While each of the eight datasets has a different definition of civil war, we assume that

the similarities in their definitions are similar enough to treat them as measuring the same

underlying latent concept, albeit with different stringency, usually based on the number of

battle deaths per year. Thus, we wish to combine the information contained in each dataset

to estimate an underlying latent probability of civil war.

4.1 Simple two parameter IRT

We begin with a discussion simple two parameter item response theory (2PL IRT) model

to introduce notation and provide a foundation for the dynamic models we propose below.

In a standard IRT, the estimated probability that rater k assigns observation i a value of 1

is given by Eq 1. The parameter θi is the unobserved latent value for observation i. The

“difficulty” parameter for rater k, δk, corresponds to a rater-specific intercept: we can think

of it as a bias or offset term that shifts rater k’s threshold for a positive class label relative

to the latent variable θ. The “discrimination” parameter for rater k, αk > 0, corresponds to

a slope. This parameter controls how precisely rater k distinguishes positive from negative

cases along the range of θ or, alternatively, how much uncertainty rater k demonstrates when

evaluating cases that call in the middle range of θ. Here we suggest standard normal and

exponential priors for these parameters, though other priors may be preferable in practice

(Eqs 2 and 3).
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P (yik = 1|θi, αk, δk) = logit−1(αk(θi − δk)) (1)

=
exp(αk(θi − δk)

1 + exp(αk(θi − δk)
δk, θi ∼ Normal(0, 1) (2)

αk ∼ Exponential(1) (3)

4.2 “Robust” dynamic IRT

Static IRT models do not account for the autocorrelation in latent status between years

within a country. By ignoring the potential information between years, the posterior es-

timates that do not include autocorrelation are very wide and have large variances from

year to year. However, simply including a normally distributed random walk does not allow

sharp jumps in latent status (Ulfelder and Taylor 2015; Reuning, Kenwick and Fariss 2019),

which does not match the sudden onset and termination dynamics that are often present in

civil war. Ulfelder and Taylor (2015) suggest modeling the temporal autocorrelation as a

Cauchy distribution, centering the current year’s status on the previous year’s status, while

still allowing large shifts in status. However, the Cauchy distribution’s variance induces

large variance in the posterior estimate and can make it difficult for the model to converge.2

Reuning, Kenwick and Fariss (2019) point out that a Student’s t distribution with few de-

grees of freedom offers the ability to allow large shifts in latent status while still usefully

constraining the dynamic model.

The robust dynamic IRT follows the suggestion in Reuning, Kenwick and Fariss (2019)

and modifies the simple 2PL IRT. We index our latent variable, θc,t, by c and t, representing

countries and time units (years), respectively. For the first observation per country we

draw θc,t=1 from a Student’s t distribution with four degrees of freedom and mean zero.

For t > 1 we draw θc,t from a Student’s t distribution with four degrees of freedom and

mean θc,t−1 (Eq 4). We place an Exponential(1) prior on the scale of the t distribution

(Eq 5). We also modify our prior for αk to maintain consistency between this model and

our subsequent models (Eq 6). Here, we draw αk from a standard Normal distribution

and exponentiate this value when computing the inverse logit from Eq 1. Therefore, Eq 1

becomes logit−1(exp(αk)× (θc,t − δk)).
2We experimented with the model suggested by Ulfelder and Taylor (2015) but found convergence issues,

even on their original democracy application.
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θc,t ∼

T4(θc,t−1, σ) if t > 1

T4(0, σ) if t = 1
(4)

σ ∼ Exponential(1) (5)

αk ∼ Normal(0, 1) (6)

Reuning, Kenwick and Fariss (2019) find that this “robust” dynamic model outperforms

static IRTs or a simple “dynamic” model that uses a Gaussian random walk. We use this

model as a baseline and suggest improvements below.

4.3 Random effects IRT

Our first proposed model introduces random coder effects across countries. We can imagine

scenarios in which rater difficulty and discrimination parameters are heterogeneous across

cases. Some countries may pose greater challenges to raters than others if, for example,

information from those areas is particularly poor. For a given country c then, we may want

to leverage information about not only in the mean difficulty or discrimination parameter

for a rater, but also country-rater idiosyncrasies. In this model, we draw random variables

αk,c, δk,c, and σc,t as given in Eqs 7 through 10. Hyperpriors are given in Eqs 11 through 15.

θc,t ∼

T4(θc,t−1, exp(σc,t)) if t > 1

T4(0, exp(σc,t)) if t = 1
(7)

αk,c ∼ Normal(µαk
,Σα) (8)

δk,c ∼ Normal(µδk ,Σδ) (9)

σc,t ∼ Normal(µσc , 1) (10)

µαk
, µδk , µσc ∼ Normal(0, 1) (11)

Σα = Diag(τα)× Ωα ×Diag(τα) (12)

Σδ = Diag(τδ)× Ωδ ×Diag(τδ) (13)

τα, τδ ∼ Cauchy(0, 2.5) (14)

Ωα,Ωδ ∼ LKJCorr(2) (15)
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4.4 Bayesian Data Reweighting IRT

While there may be many motivating reasons for estimating a latent variable from observed

realizations, one is the desire to leverage multiple observations to minimize the impacts of

anomalous (and possibly miscoded) observations. To this end, we incorporate Bayesian data

reweighting as introduced by Wang, Kucukelbir and Blei (2017). We convert our models

into robust probabilistic models (RPM) by raising the likelihood of the model to the power

of an observation-specific weight, wi ∈ w × N , a simplex vector of weights scaled by the

total number of observations (Eq 16).3 Θ is the vector of all model parameters except

the weights and w is the length-N vector of observation weights. These parameters down-

weight the influence of observations that poorly match the assumptions of the model (i.e.,

outliers). These weights are themselves latent parameters that are modeled with a Dirichlet

distribution as shown in Eq 17.

p(Θ,w|y) ∝ pΘ(Θ)pw(w)
N∏
i=1

`(yi|Θ)Nwi (16)

w ∼ Dirichlet(1) (17)

4.5 “Switching” IRT

Finally, we introduce a “switching” dynamic IRT that explicitly accounts for shifts in latent

status in a theoretically motivated way. We estimate three latent states for each country year

(Eq 18) along with a switching parameter, π (Eq 20). The means for the latent states are

drawn from a Normal distribution such that they preserve the order given in Eq 19. Thus,

the war status is constrained to have a higher value than the transition and peace states.

Each country-year is associated with a simplex vector πc,y over the three latent states. The

small prior on the Dirichlet distribution encodes a preference for country-year membership

probability mass to be centered on one of the three latent states rather than mixed between

them.

3Note the possible confusion in terminology. Reuning, Kenwick and Fariss (2019) use “robust” to refer
to their use of a Student’s t rather than a normal walk. Wang, Kucukelbir and Blei (2017) use the term
“robust” to refer to their data reweighting scheme.
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θpeace
c,t ∼

T4(θpeace
c,t−1 , σ

peace) if t > 1

T4(µpeace, σpeace)) if t = 1

θtransition
c,t ∼ T4(µtransition, σtransition)) (18)

θwar
c,t ∼

T4(θwar
c,t−1, σ

war) if t > 1

T4(µwar, σwar)) if t = 1

µpeace, µtransition, µwar ∼ Normal(0, 5) s.t. µpeace < µtransition < µwar (19)

σpeace, σtransition, σwar ∼ Exponential(2)

π ∼ Dirichlet(0.01) (20)

4.6 Combined models

We consider two further models that combine these techniques. We fit a model that employs

both random effects (RE) and the Bayesian data weighting scheme (W). We also consider a

switching model that also incorporates data weighting (W). In total, we fit six models.

5 Evaluating the Models

Our validation of the six models consists of several steps parts. First, we evaluate their

performance on semi-simulated data with a known true latent probability of civil war and

compute accuracy statistics. We then generate a plot for visual comparison between the six

models on simulated data. Finally, then apply the model to the actual dataset of civil war

status, which allows further validation in a real world setting.

5.1 Validation on Simulated Data

To validate our models, we begin by producing semi-simulated data with a known “true”

probability of civil war. Because we never have access to the true underlying probability

of civil war in real datasets, we cannot directly compare the probability returned by our

model to a ground truth dataset. Moreover, purely simulated data may differ in important

ways from the true process of civil war onset and termination, with its complicated temporal

dependence. To produce our evaluation data, we produce “semi-simulated” data, beginning

with Fearon and Laitin’s (2003) dataset of civil war. When Fearon and Laitin code a civil

war onset or termination, we shift our latent war variable upward and toward by a random

11



Model RE W Switch RMSE Acc. F1 α correct δ correct
1 RE 0.07 0.99 0.97 1.00 0.50
2 RE-W 0.07 0.99 0.97 1.00 0.25
3 Simple “Robust” 0.08 0.99 0.98 1.00 1.00
4 W 0.08 0.99 0.98 1.00 1.00
5 Switching 0.11 0.99 0.96 1.00 0.50
6 Switching-W 0.11 0.99 0.96 1.00 0.50

Table 2: Evaluation results of six models on semi-simulated data. “Simple robust” is the model

proposed by Reuning, Kenwick and Fariss (2019) described in section 4.2. “RE” refers to the

random effect model described in section 4.3. “W” is the Bayesian data weighting approach described

in section 4.4, and “Switch” refers to the model described in section 4.5.

amount. By adding noise and autocorrelation, we can produce a dataset of latent civil war

status that qualitatively matches the dynamics of civil war status. Further details on the

semi-simulated approach are in Appendix A. Table 2 shows the results of the six models on

our semi-simulated data.

For each of the six models, we compute three standard accuracy measures. First, because

we are interested in the probability of civil war, we compute the root mean squared error

(RMSE) of the model’s predicted probability of civil war against the “true” probability of

civil war in our simulated data. Next, we dichotomize both the inferred and true probabilities

of civil war by coding civil was as 1 if Pr(civil war > 0.5). While this sacrifices information

about the underlying probability, it allows us to calculate familiar accuracy measures such

as simple accuracy
(

1
N

∑N
i=1 1( ̂civil war = civil war)

)
and the F1 score (the harmonic mean

of precision and recall). Finally, because we know the true rater bias and discrimination in

our simulated data, we can compare the inferred rater parameters against their true values.

The final two columns in Table 2 show the whether the model recovers the correct ordering

of the parameters. A value of 1 indicates that the model provides the correct rank for all

parameters, 0.5 indicates that half of the parameters are in the correct order, and so on.

We find that the models are similar in their accuracy performance, but that the two

switching models perform worse than the other four models. Only two models, the reweight-

ing model (W) and the simple robust model, correctly recover the order of the rater param-

eters.

A second form of validation on simulated data is to visually inspect the latent variable

estimates on simulated data. Figure 1 shows the outputs of the six models on four simulated

countries. Because our simulated data includes the true probability of civil war, we can

plot both the true probability (red) and the inferred probability (blue) with 90% credible

intervals. The underlying observed civil war status from our simulated raters are shown in a
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Figure 1: Simulation results: Posterior estimates of latent civil war probability for four countries

(columns) and six models (rows) on simulated data. Red lines show the true latent probability and

the blue lines show the posterior estimate, with 90% credible intervals. The transparency of the

+ symbols indicates the proportion of the four raters who code civil war in that country-year.

Because the data is semi-simulated, country names are replaced by numeric codes to prevent over-

interpretation.
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modified rug plot under panel. The figure reveals several features of the models that are not

apparent in the performance statistics. The two switching models perform quite poorly, with

phantom onsets and terminations that deviate greatly from the true underlying probability.

The robust model and the model with random effects + weighting (RE-W) are qualitatively

the best models, closely matching the underlying probability and with few extraneous jumps.

The RE-W model has a slight advantage in allowing sharper jumps in probability when civil

war status changes, when compared to the robust model. Dynamic latent variable models

often face a tradeoff between stability and allowing for sharp changes in the underlying latent

variable (Reuning, Kenwick and Fariss 2019), and the RE-W model appears to provide both

desirable traits.

5.2 Real Model Results

We then fit the models on the real dataset of civil war status described in section 3. Figure

2 shows the results of the two models that performed best on the simulated data: the

baseline “robust” model and the random effects + reweighting model (rows) on four countries

(columns). The black line and points show the mean posterior prediction with shaded 90%

credible intervals. A modified rug plot below shows the proportion of datasets code civil

war in each year. The four countries are selected to show a range of civil war dynamics.

Afghanistan begins at peace and remains at war from 1979 onward, with high agreement

between raters. Colombia shows a much more uncertain process of civil war, with at least

a quarter of raters coding civil war in each year after 1950, but large disagreements. Cuba

has a short war with high agreement, and the Netherlands show unanimous agreement on

peace throughout the period.

The RE-W model provides greater differences from the simple moving average than the

robust model, with sharper jumps between years and more instances of mean predictions

at either 0 or 1. This is desirable in the case of Cuba, but is ambiguous in the cases of

Afghanistan and Colombia. Qualitatively, the results for Afghanistan match our expectations

for civil war status in 2002–2010. While the conflict was certainly internationalized through

the involvement of NATO, the period also saw major Taliban efforts to regain control of

the country. The results for Colombia are more ambiguous. While violence was at a much

lower level in the 1970s than the rest of the conflict, fighting continued and assigning zero

probability to civil war status seems overconfident.
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Figure 2: Posterior estimates of latent civil war on real data, showing the probability for four

countries (columns) and two models (rows) on real data. The top row shows the results of a random

effect + weighting model, and the second row shows a “robust” dynamic model (Reuning, Kenwick

and Fariss 2019). The colored points below the latent variable lines show the proportion of datasets

that code each country-year as a civil war.

5.3 Evaluating Bias Terms

As a final validation, we examine the estimated bias terms for each dataset in the RE-

W model. In Figure 3 we depict the posterior distribution of the mean estimated rater

difficulty for the RE-W model. Lower values correspond to lower thresholds for civil wars

along the latent variable scale. ICEWS has the lowest estimated difficulty (bias) parameter,

which matches its coding definition: it has no lower limit to the number of annual (or total)

casualties required to code a violent domestic conflict. Similarly, UCDP minor civil wars

have a threshold of 25 battle deaths per year, much lower than the remaining datasets. That

ICEWS and UCDP major or minor obtain the two lowest difficulty parameters makes sense.
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Figure 3: Mean difficulty (bias) parameters by rater for the RE-W model, fit on real data.

Fearon and Laitin requires only 100 battle deaths per year on average. Sambanis and Doyle,

Collier and Hoeffler, COW, and UCDP Major all require some variation on 1,000 annual

battle deaths. Therefore, that Fearon and Laitin obtains the third smallest bias parameter

properly reflects the relative coding rules.

6 Incorporating Measurement Uncertainty

Because previous work on civil war onset uses single datasets of civil war status, they can-

not incorporate measurement error into their analysis, only the sampling error estimated

by regression models. We follow the recommendations by Schnakenberg and Fariss (2014)

and Crabtree and Fariss (2015) to incorporate additional measurement uncertainty into the

main results of the model. Building on the multiple imputation literature (King et al. 2001),

they propose fitting M separate models on M copies of the original data, where each dataset

is built with separate draws from the posterior estimate. To combine the sampling uncer-

tainty within each model with the measurement uncertainty across different draws from the

posterior. These are combined using a rule proposed by Rubin (1976, 1987):

SE(θ) =

√√√√ 1

M

m∑
i=1

SE(θi)2 + S2
θ (1 + 1/m)

where the sample variance of θ across m estimates is: S2
θ =

∑m
i=1

(θj−θ̄)2
(m−1)

.

In Figure 4 we show the results of re-analyzing the main result from Fearon and Laitin
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(Table 1, Model 1), incorporating additional measurement uncertainty.4 We take 250 draws

from the posterior distribution of civil war status for each country-year. Each of these rep-

resent a complete set of possible war status for all country years. We then take a Bernoulli

draw from the latent probability for each country-year and fit the original Fearon and Laitin

model on that draw. Using Rubin’s rule, we combine the sampling variance from within

the models with the variance across each model.5 The new variances that account for mea-

surement error are very large, with no variable reaching statistical significance. This result

diverges from our prior understanding of civil war and may indicate problems with the model

or its convergence. We have very strong theoretical and empirical results to support the belief

that GDP and population are predictive of civil war onset, in a way that should not depend

on measurement uncertainty. While this approach to including measurement uncertainty in

the dependent variable has promise, it depends on having an well functioning measurement

model.

7 Improving Forecasting with Posterior Bagging

Civil war forecasting faces many challenges. One of these problems is a well-known (but

normatively good) rare data problem. Civil war occurs relatively infrequently as a proportion

of country-years since 1945. This problem is further exacerbated when researchers wish to

rely on covariates that are only available for more recent times, such as text-derived event

data. A second challenge is the problem of borderline cases, where fighting is occurring, but

may not rise to the level of civil war.

We use draws from the posterior distribution of latent statuses to partially mitigate both

of these problems. Incorporating the uncertainty in civil war status should improve our

forecasts by increasing the amount of information we can include in our model. Rather

than including or excluding borderline cases altogether as a hard 0/1 label would do, we can

include borderline cases in proportion to their predicted probability. For instance, in Colom-

bia in 2015, the ceasefire between the government and FARC broke down and several dozen

combatants were killed in each side. While the casualties were below the 100 battle death

threshold that some datasets use, it met the criteria for other datasets. If the measurement

model gives a probability of 0.4 for civil war status in this year, it would allow some models

in the ensemble to learn to predict civil war in this year, while other models would learn to

predict no civil war.

4We thank Max Goplerud for detailed comments that corrected an earlier error in generating the figure.
5We conduct an additional test, where instead of repeatedly sampling the latent probability of war from

the posterior, we average the posterior draws to generate a single posterior probability of civil war status for
each country year. Result are similar, with slightly smaller variances.
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Figure 4: Re-analyzing Fearon and Laitin’s Model 1 (Table 1) with 95% confidence intervals that

account for measurement uncertainty using Rubin’s rule. We fit 250 separate models, each fit on a

separate draw from the posterior probability of civil war for each country year. Binary war status

is generated with a Bernoulli draw from the posterior probabilities.
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Breiman (1996) introduces bagging, a technique for aggregating multiple models trained

on bootstrap samples of a dataset to improve their predictive accuracy.

L: set of bootstrap draws {(x, y), (x, y)...} from original data X.

φ(X,L): predictor for y given L
Define the aggregate predictor φA(X) = EL[φ(X,L)]

We then decompose the expectation over L of the mean squared error:

EL[(y − φ(X,L))]2 = y2 − 2yEL[φ(X,L)] + EL[φ(X,L)]2

Recall the definition of the aggregate predictor:

= y2 − 2yφA(X) + φA(X)2

= (y − φA(X))2

by Jensen’s inequality (E[Z2] ≥ E[Z]2) :

EL[y − φ(X,L)2] ≥ (y − φA(X))2

This implies that the mean squared error from the aggregate (bagged) predictor will be

lower (or the same) as the expected MSE from a non-aggregated model. The derivation

(omitted) is similar for a classifier predicting the maximum probability class.

The result that the aggregate predictor outperforms the original predictor depends on

the variance of the predictive models across the datasets in L: if the variance is low, taking

the expectation of the predictor over the different draws will be very close to the predictor

trained on the original dataset. Thus, bagging is most useful in cases where models have

higher variance.

While bagging takes bootstrap draws from the entire dataset, our “posterior bagging”

approach uses the posterior distribution of civil war status as a source of variability.6 We

generate m = 1...M copies of the original dataset by sampling y values from the posterior

distribution ym ∼ Y and leaving X unchanged for each draw. We fit a model on each

posterior draw and original X and aggregate the models into an ensemble forecast.

7.1 Posterior Bagging Simulation Results

We begin by providing forecasting results using our simulated data to show the effectiveness

of the posterior bagging approach. We begin with a standard civil war forecasting setup,

building on Muchlinski et al. (2015) and Colaresi and Mahmood (2017). While the specific

models and techniques in Muchlinski et al. (2015) contain errors (Wang 2019; Heuberger

6Note that posterior bagging can easily be combined with traditional bagging, for example, by fitting
multiple random forests on posterior draws.
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2019), the dataset and base models have been used as foundations for other forecasting work

(Colaresi and Mahmood 2017).

Specifically, we use the same country-year dataset as Muchlinski et al. (2015) and Colaresi

and Mahmood (2017), and use the same set of 88 variables that each of those works employ.

Rather than comparing logistic regression and random forest models, we opt for a consistent,

simple logistic regression model to predict civil war onset.

Most civil war forecasting projects evaluate the performance of their models using a set

of metrics defined for binary outcomes, including Brier scores, the area under the receiver-

operator curve (AUC), raw accuracy, or precision, recall, and F1 scores. The premise of our

project is that civil war is a latent variable, best thought of as a probability of being in a civil

war, rather than a simple binary coding. As a result, even in our simulated data, we have no

binary ground truth for evaluating forecasting models. We evaluate our models using two

metrics:

• root mean squared error (RMSE) between the predicted probability of civil war, and

the “true” latent civil war status from our simulation. This choice is theoretically

motivated, given that Brier scores, a common proper scoring rule for forecasts, can be

seen as the binary case of the mean squared error loss.

• F1 score, using a dichotomization of the latent variable, where an observation with

latent probability Pr(civil war) > 0.5 is coded as having a civil war. Dichotomizing

the latent variable sacrifices some information, but allows us to more easily compare

our results to the forecasting literature.

Figure 5 shows the out of sample F1 and RMSE scores for a forecasting model trained

on the period 1946–1980 and evaluated on 1980–2000. (Note that the outcome is our semi-

simulated latent variable.) The posterior bagging technique shows no improvement in F1

score, but shows marginal but significant gains in RMSE. The limited improvement offered

by posterior bagging is not surprising, given the theoretical results above. Even with a

relatively large number of covariates, the logistic regression model is fairly stable, yielding

an aggregate predictor that is similar to the simple predictor.

However, posterior bagging does show major improvements in a limited data setting.

Figure 6 shows the results of a forecasting model trained only on the 1980–1990 time period.

While the performance of the posterior bagged model is lower than the model trained on the

full time period, it offers very large improvements over the ordinary logistic regression model.

The F1 for the posterior bagged model is around 0.58, compared to an F1 score around 0.42

for the ordinary logit model. The RMSE shows similarly dramatic improvements.
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Figure 5: Out of sample results for full time period forecasting on semi-simulated data. F1

and root mean squared error for ordinary logit (vertical line) and posterior-bagged logit (histogram).

Trained on 1946–1980 and evaluated on 1981–2000.
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Figure 6: Out of sample results for forecasting using a restricted date range on semi-simulated

data. F1 and root mean squared error for ordinary logit (vertical line) and posterior-bagged logit

(histogram). Trained on 1980–1990 and evaluated on 1991–2000.
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Note that fitting a single measurement model on the entire time period is unlikely to

cause train/test set contamination because we do not use the latent probability of civil war

as a feature in our model to predict civil war in future time periods. However, a promising

direction for future forecasting research would be to fit separate measurement models for all

years through t− 1 and incorporate the latent probability of civil war as a feature to predict

war in time t.

7.2 Forecasting Civil War Onset

The results in the previous section used semi-simulated data to show that posterior bagging

offers improvements over simple logistic regression, especially in a limited data setting. Next,

we turn to applying the posterior bagging approach to real data, using draws from the

measurement model we discuss in Section 4.

Figures 7 and 8 show the F1 and RMSE of the forecasting models. Here, the model differs

from the previous forecasting model on simulated data, because we do not have access to

a true underlying probability of civil war. Instead, we generate binary civil war status by

dichtotomizing the latent probability of civil war from our measurement model. The results

are similar to the forecasting model fit on simulated data. When trained on the longer time

period, the posterior bagged model shows significant improvement in RMSE, but not in

F1. On a restricted date range, however, the posterior-bagged model greatly outperforms

the simple logistic regression model. When researchers fit models on shorter time periods,

perhaps as a result of data limitations, posterior bagging their predictive models can greatly

improve their models’ accuracy.

8 Future Work

This project offers several promising directions for future work.

First, the measurement model provides the possibility of extending a single dataset’s

coding forward and backward in time. By using the estimated latent civil war status and the

estimated rater bias and discrimination terms, a researcher can generate predicted codings

for a single dataset. For instance, given the prominence of the original Fearon and Laitin

dataset in the forecasting community, a researcher could extend the Fearon and Laitin dataset

forward in time, inferring how the dataset would have coded other civil wars. This allows

for greater consistency in evaluating models over time.

Second, the measurement model can be used to identify non-classical errors in civil war as

a dependent variable, as discussed in Section 2. If civil war measurement error is correlated
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Figure 7: Out of sample results for full time period forecasting on semi-simulated data. F1

and root mean squared error for ordinary logit (vertical line) and posterior-bagged logit (histogram).

Trained on 1946–1980 and evaluated on 1981–2000.
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Figure 8: Out of sample results for forecasting using a restricted date range on actual data. F1

and root mean squared error for ordinary logit (vertical line) and posterior-bagged logit (histogram).

Trained on 1980–1990 and evaluated on 1991–2000.
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with the covariates in a model explaining or predicting civil war, this induces a form of

omitted variable bias that will yield biased coefficient results. We can obtain estimates of

measurement error by comparing our posterior estimate of civil war status with the coding

provided by each dataset and regressing the difference on the covariates used in a model.

Our reweighting models offer a second approach to this: the weights provide more direct

information on the countries where coders perform poorly, which may reveal systematic

regional or income-based errors, similar to the patterns in missing political economy data

(Lall 2016).

Finally, future improvements to the models, by reparameterizing or changing priors and

running for more iterations, may provide better convergence and more precise estimates.

This is especially likely in the case of the switching models, which display poor convergence.

9 Conclusion

Whether a country is experiencing a civil war is clearly latent–experts can code civil war

status, but their binary decisions depend on their coding rules, varying interpretations, data

limitations, and noise. We introduce a new measurement model to generate estimates of

the probability that a country is experiencing a civil war in a given year. Our results show

that, similarly to work on measurement models for other political phenomena, quantifying

the uncertainty around civil war has implications for our conclusions about the causes of

civil war onset.

We provide several contributions. First, we introduce the first treatment of civil war

status as a latent variable, drawing on eight datasets of civil war status. Similar to other

latent variables in political science, providing an estimate of latent civil war is useful in

understanding the differing coding rules of each dataset, the uncertainty in civil war status,

and its implications for both predictive and explanatory variables, as we demonstrate. We

identify coder bias terms that match our expectations from the definitions of civil war in

their codebooks.

Second, we provide new methodological contributions on dynamic latent variable models.

We propose several extensions to previous work on “robust” dynamic models, including the

use of random coder–unit effects, Bayesian data reweighting, and a switching model. We

find that a combination of random effects and data reweighting provide good estimates of

dynamic civil war status. We find that the switching model, while theoretically motivated,

does not perform well on our simulated data.

Third, we show that measurement uncertainty around civil war status has implications for

explanatory models of civil war onset. Incorporating measurement uncertainty into Fearon
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and Laitin’s classic model greatly expands the confidence intervals, but we remain cautious

in interpreting the new confidence intervals given their implausibly wide range.

Finally, we introduce posterior bagging, a technique for improving forecasting models.

Extending Breiman’s original work on bagging, we show that taking draws from the posterior

of civil war status, fitting a model on each draw, and aggregating their predictions improves

the accuracy of forecasting models, especially in a limited data setting.
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A Semi-Simulated Civil War Details

• Yit ∈ {0, 1} is the original binary coding of civil war, where 0 indicates peace and 1 is

war.

• Y ∗it ∈ R is a latent status.

• Sit ∈ {0, 1} is a change in status, where 1 indicates an onset, and 0 indicates a termi-

nation

We initialize our latent variable, Y ∗it at -6 if the country begins at peace, at 4 if it begins

at war. Then, for following years, we generate the latent variable as follows:

Y ∗it = 0.8 · Y ∗i,t−1 autocorrelation in status

+ (1− Yit)N (−1, 0.3) downward trend during peace

+ YitN (0.6, 1) upward trend during war

+ SitN (5, 1) positive shock for onset

+ (1− Sit)N (−4, 1) negative shock for termination

+ Si,t+1N (1, 1) increase in the year before onset

+ Si,t+1N (1, 1) increase in the year following termination

To convert the latent variable into a latent probability of civil war, we apply a logistic

transformation: πit = logit−1(Yit).

To generate observed codings for each rater Yitk ∈ {0, 1}, we apply the two parameter

IRT model using rater-specific parameters αk and δk for k = 1...4 raters:

Y ∗itk = logit−1 (αk(Y
∗
it − δk))

Yitk = Bernoulli(Y ∗itk)
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