ggplot – geoms, labels, scales

Professor Halterman

Michigan State University

PLS 397 Analyzing and Visualizing Data Fall 2023

Today's quick checkin:

https://forms.gle/BLat7SguVcj1gXhx9

This should take about 5 minutes and the point is:

- ➤ To encourage you to think about things we cover in lecture and in the reading
- As a participation grade
- ▶ To help me understand where everyone is

Next week's reading

► Monday: Section 4 intro, plus 4.1–4.5

► Wednesday: 4.6, 4.7

► Following Monday: 5.2

Table of Contents

- More geoms
- 2 geoms with more units
- 3 Labels
- 4 Scales
- Coming soon...

Getting Started

- ► Open the in-class exercise Rmd from D2L in Rstudio
- ► Run the beginning code to load the libraries we need and create the japan dataframe that we'll be using.
- Plot: Create a scatterplot showing the change in per-capita GDP over time.

A geom zoo

We can show the same aesthetics (x = year, y = GDP per capita) in many different ways:

- ▶ geom_point
- ▶ geom_line
- ► geom_col (a bar plot)
- ► combining points and lines

+ geom_point()

6 / 48

+ geom_line()

+ geom_line() + geom_point()

8 / 48

+ geom_col()

9 / 48

+ geom_ribbon()

Error in `geom_ribbon()`:

```
'``{r}
ggplot(japan, aes(x = year, y = lifeExp)) +
  geom_ribbon()
```

```
! Problem while setting up geom.
i Error occurred in the 1st layer.
Caused by error in `compute_geom_1()`:
! `geom_ribbon()` requires the following missing aesthetics: ymin and ymax or xmin and xmax
Backtrace:

 base (local) `<fn>`(x)

 ggplot2:::print.ggplot(x)
 qaplot2:::qaplot_build.qaplot(x)
 aaplot2:::by_layer(...)
12. gaplot2 (local) f(l = layers[[i]], d = data[[i]])
13. l$compute_geom_1(d)
14. ggplot2 (local) compute_geom_1(..., self = self)
         ```{r}
 ggplot(japan, aes(x = year, ymax = lifeExp, ymin=0)) +
 aeom_ribbon()
```



- Line graphs emphasize change over time.
- Bar charts are common, but they can be tricky with height vs. volume

#### adding aes

Make a line + point plot showing GDP per capita over time, with the size set by population.



Looks weird! What happened?

### Changing aesthetics per geom

Remember: we set the aesthetics at the beginning, and those get used in each subsequent geom.

But we can set aes separately within the geom:

```
ggplot(japan, aes(x = year, y = gdpPercap)) +
 geom_point(aes(size = pop)) +
 geom_line()
```



15 / 48

#### Layer order

Now let's make a figure that has both dots and lines, with color set by life expectancy.



Problem: the points are really small!

# Changing visual features without aes

- We usually want to set visual features (e.g. color, size) using our data.
- ▶ But sometimes we want to manually set these attributes.
- ➤ To do that, we can use our regular arguments to aes, but outside aes.
- ► Example:

```
ggplot(japan, aes(x = year, y = gdpPercap)) +
geom_line() +
geom_point(aes(color = lifeExp), size = 5)
```

► Including aes(size = 5) can make ggplot confused.

# Manual point size



18 / 48

### Manual point size-if we put it in aes

We don't want to put it inside aes!



```
ggplot(japan, aes(x = year, y = gdpPercap)) +
 geom_line() +
 geom_point(color = "blue", size=5)
```



Takeaway: if you're manually setting color/size/etc, do it outside aes.

Halterman (MSU) ggplot 2 PLS 392, Fall 2023 20 / 48

#### **Table of Contents**

- 1 More geoms
- 2 geoms with more units
- 3 Labels
- 4 Scales
- 5 Coming soon...

### More complicated data

- ► Let's experiment with some slightly more complicated data.
- ► Find the code in your .Rmd file that creates jsk—a dataframe with data for both Japan and South Korea.
- Using that dataframe, make a simple scatterplot showing GDP over time.
- ► Once you make the figure, what's wrong with it? Think of a way to improve it, then write the code.

# Simple Japan and South Korea scatterplot



# Japan and South Korea colored scatterplot



# Japan and South Korea colored scatterplot with lines



### Making a bar plot

Now let's make a bar plot. (Remember what the geom is?)



How do we interpret the heights of these bars?

# What happened?

- We told ggplot to use year as the x-axis and GDP per capita as the y axis.
- ▶ It stacked the GDPs of the two.
- ▶ When would this be useful? When would it not?
- ► If we want the bars next to each other, we can tell ggplot explicitly: geom\_col(position="dodge")
- Try that out and see which you prefer.
- ► (If you finish that, try geom\_col(position="fill"). What does that give us?)

# Side-by-side bars



#### **Table of Contents**

- 1 More geoms
- 2 geoms with more units
- 3 Labels
- 4 Scales
- 6 Coming soon...

# Labeling your figure is crucial!



Credit: r/dataisugly

ggplot has a labs layer to easily add axis labels and a title to your plot:

```
labs(x = "x axis label",
 y = "y axis label",
 title = "An informative title")
```

Let's revisit the plot where we show year, GDP per capita, and population from above:

```
ggplot(japan, aes(x = year, y = gdpPercap)) +
 geom_point(aes(size = pop)) +
 geom_line()
```

Add a labs layer to provide a title and axis labels to the plot. (Hint: remember all layers get added with a + sign)



# Advanced labs options

- ▶ But notice that our legend title is still a raw variable name!
- ► The labs function can take other arguments besides x, y, and title.
- ► In this case, we need to set a label for the attribute shown in the legend. Which aesthetic does the legend show?
- ► Other labs options:
  - subtitle
  - caption
- Experiment with those and see what happens!



#### **Table of Contents**

- 1 More geoms
- 2 geoms with more units
- 3 Labels
- 4 Scales
- 6 Coming soon...

### One more plot

Let's re-create our plot of our jsk data that shows two sets of points connected by a line: one for each country, with time on the x-axis and GDP on the y axis. The lines should be colored by country and the points should be sized by population. Make sure to label the plot!

Hint: we did something very similar above, and one of the secrets behind programming is to copy your own code whenever you can!



## Adding scales

- ► Take a look at the last figure you made.
- ► The axes are labeled now, which is great. But what about the numbers on the axes?
- ggplot lets you customize the axis and legend numbers by specifying a scale.
- ▶ Note that these are tricky: I always have to look up the docs.
- ► Example: + scale\_y\_continuous(), scale\_size\_continuous(), scale\_x\_discrete()...)

# Changing the y axis



- ► Let's start with the y axis: what would make make the numbers clearer?
- ► Now try adding scale\_y\_continuous(labels = scales::label\_dollar())
- ► (If you're ahead, experiment with using + scale\_y\_log10() or scale\_y\_reverse() instead.)



- ► The labels argument changed how we formatted the dollar values on the y axis.
- ► Next, we probably want to make the population values less hideous.
- ► To change the scale for the y axis, we used scale\_y\_continuous. How should we change the scale for size?
- scale\_size\_continuous(labels = scales::unit\_format(unit =
  "m", scale = 1e-6))

## Formatting population in millions



42 / 48

### Another idea: leave out the m

#### How would we do this?



### Even fancier!

Hint: adding \n to your label will make R return to a new line.



### Labels vs. breaks

- ► So far, we've been changing the label argument to scale
- ▶ But we can also change the breaks
- ► Try scale\_x\_continuous(breaks = seq(1950, 2007, by = 5))



### **Table of Contents**

- More geoms
- 2 geoms with more units
- 3 Labels
- 4 Scales
- Coming soon...

# Coming soon

- ► Working with discrete data
- ▶ Facets
- Setting x and y axis limits
- Annotating data with labels
- ► Modifying data for plotting